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Abstract. The third term in the Taylor expansion of the total energy functional around the number of 
electrons N is evaluated as the second-order derivative of orbital Kohn–Sham energies with respect to  
orbital occupancy. Present approach is an extension of an efficient algorithm to compute density-
functional based orbital reactivity indices. Various energy derivatives used to approximate orbital reac-
tivity indices are defined within the space spanned by the orbital occupation numbers and the Kohn–
Sham one-electron energies. The third-order energy functional derivative has to be considered for singu-
lar hardness tensor ([ηη]). On the contrary, this term has negligible influence on the reactivity index val-
ues for atomic or molecular systems with positively defined hardness tensors. In this context, stability of 
a system in equilibrium state estimated through the eigenvalues of [ηη] is discussed. Numerical illustration 
of the Kohn–Sham energy functional derivatives in orbital resolution up to the third order is shown for 
benchmark molecules such as H2O, H2S, and OH–. 
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1. Introduction 

The conceptual power of density functional theory1 
(DFT) is nowadays well recognized along with its 
computational success to describe accurately struc-
tural and spectroscopic properties of molecules and 
solid state systems. Indeed, this is the theory that has 
made it possible to define rigorously intuitive con-
cepts as hardness or softness, originally introduced 
by Pearson2 in order to provide insight into the nature 
of chemical reactivity. Starting from the pioneering 
work of Parr and co-workers3, where the chemical 
potential (µ) and the hardness (η) were first defined 
within the DFT as first- and second-order Kohn–
Sham (KS) total energy derivatives to the number of 
electrons N, many researchers have further devel-
oped methods to assess the chemical reactivity indi-
ces. So it became possible to assign numbers to the 
reactivity indices computed from first principles and 
to exploit these values to rationalize wide range of 
chemical interactions, ranging from the atomic and 
molecular reactions,4 surface adsorption processes.5 
and nanoscale objects.6 Exhaustive descriptions of 
the reactivity index applications in physics and che-
mistry can be found in a monograph of Pearson7 and 
in recent review articles.8,9 
 As the chemical potential is a global quantity for a 
chemical system, much more attention has been 

given to the hardness that characterizes the local re-
sponse at a given point inside the molecular region. 
Among various working formulae10–27 that were 
proposed to approximate total and local hardness the 
definition of hardness tensor [ç] was introduced27–33 
as well. Computational schemes using charge sensi-
tivity analysis29,30 whereas the diagonal hardness 
tensor elements (çij) were obtained from the semi-
empirical schemes31,32 were initially proposed. Atoms 
in molecule (AIM) methods32 were also adopted. 
Later, several works15,16,33–36 appeared which promo-
ted the idea to define ηij in its “natural” framework, 
namely within DFT. Neshev and Proynov,33,34 adop-
ted the Xα approximation to derive ηij as first deriva-
tive of the orbital energy with respect to the orbital 
occupation. Further, this idea was generalized using 
Janak’s theorem37 for the density functional compu-
tational methods.15,16,35,36 
 The interest to hardness tensor computations is 
mainly due to the fact that it provides the basis to 
obtain other reactivity indices as softness tensor, total 
softness and hardness, and the Fukui functions. In 
self-consistent charge schemes, popular for example 
in semi-empirical and tight-binding methods, the dia-
gonal elements of the atomic hardness tensor give 
the change of Coulomb energy of an orbital with re-
spect to its occupation number.38 Orbitally resolved 
hardness tensor algorithm16,39 (ORHT) was incorpo-
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rated into a DFT-TB hybrid method implemented40 
into the deMon41 code, which uses atomic hardness 
tensor elements çii.

42 
 Nevertheless the concept of hardness tensor was 
largely used less attention was given to hardness 
tensor variation with the change of N. A stability of 
a molecular system studied through the hardness 
tensor eignevalues is also less discussed. It is known43 
that for zero or negative eigenvalues of [ηη] is neces-
sary to account also for the third term in the Taylor 
expansion of the total energy functional around the 
number of electrons. Therefore, in this paper we will 
focus on the computations of the tensor [A], which 
elements defines the ηij variations with respect to the 
occupation numbers nk. An extension of the ORHT 
scheme that includes the third-order KS energy de-
rivative to the orbital occupancy into the computa-
tions of other reactivity indices, such as orbital Fukui 
indices, orbital, local and total softness, and total 
hardness, is proposed as well. 

2. Kohn–Sham one-electron energy derivatives 
within the ORHT scheme 

Density (ρ(r)) change caused by external perturba-
tions is often studied in the framework of DFT 
through expansion of the total energy functional 
around the number of electrons N in a Taylor series. 
Following Janak’s extension of DFT for fractional 
occupations, the energy functional can be expanded 
around the state, characterized by the equilibrium 
values of occupation numbers n0 0 0 0

1 2( , ,..., )kn n n  and by 
the corresponding KS-eigenvalues 0 0 0
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where 0

i i in n n∆ = − . In Janak’s formulation,37 first 
derivatives of the total energy with respect to the 
occupation numbers ni give the Kohn–Sham one-
particle orbital energies. Second term in the Taylor 
expansion, (1), defines hardness tensor:27 
 

 2 / .i j ijE n n η∂ ∂ ∂ =  (2) 

According to the above formula the hardness tensor 
elements are positive and the hardness tensor is a 
symmetric tensor. Applying Janak’s theorem the ijth 
element of [ηη] can be obtained as the first derivative 
of εi with respect to nj:

15,16 
 
 / .i j ijnε η∂ ∂ =  (3) 

 
It is worth emphasizing that the use of Janak’s ex-
tension of DFT in our approach has two advantages: 
(1) the DF-energy functional can be expanded over 
the non-integer occupation numbers; and (2) in the 
calculation of hardness matrix elements one takes 
only first-order derivatives, thus diminishing the 
numerical errors. Therefore, the condition of having 
a symmetric hardness tensor is fulfilled with fair ac-
curacy (mostly up to the third digit) depending, of 
course, on the particular molecular system. Hardness 
tensor elements are themselves approximations to 
the hardness kernel,44 
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where F[ρ] is the Hohenberg–Kohn universal func-
tional.1 
 The third order derivative in (1)  
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measures the variation of ηij upon small changes in 
orbital occupation numbers. Usually, third term in 
(1) is neglected as being much smaller than the second 
one. If, the Taylor series is truncated at the second 
term (linear approximation), the energy behavior 
around the equilibrium state, 0 0( , )i inε , can be studied 
topologically not as a function of the position in the 
real molecular space but as a function of the eigen-
values and occupation numbers. The search for the 
extreme of the energy functional ∆E(n, ε) upon the 
density variation leads to a linear system of equa-
tions as follows: 
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The solution of (6) at given εi and with Det(ηij) ≠ 0 
with respect to ∆ni gives: 



Third-order energy derivative corrections to the Kohn–Sham orbital hardness tensor 

 

487

 1

1 1

[ ] ,
N N

i ij j ij j
j j

n sη ε ε−

= =
∆ = − = −∑ ∑  (7) 

 
with sij being the softness tensor elements, that are 
identical with the elements of the inverse hardness 
tensor. 
 Considering a system with a fixed deviation of the 
i-th occupation number from its equilibrium value, 

,i in N∑ ∆ = ∆  the set of (6) becomes: 
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In the last equation, λ is the Lagrange multiplier and 
can be interpreted as the effective electronegativity, 
or the negative of the chemical potential. Since the 
Kohn–Sham orbital energies can be understand as 
orbital electronegativity15,16,39 by taking the derivative 
of λ relative to εi, (8), one approximates the orbital 
Fukui indices. 
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The relation between the orbital Fukui indices and 
the orbital softness, ,i j ijs s= ∑  is: 
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As the softness is an additive quantity the total 
hardness is defined as:  

 11
1/ 1/ [ ] .ij ij
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Equations (6)–(11) provide an operational scheme to 
compute orbital reactivity indices as orbital respon-
ses, in the vicinity of the system equilibrium point 
toward small external density perturbations in the 
space spanned by the orbital occupation numbers and 
the Kohn–Sham one-electron energies.  
 It is worth to note that the above equations are 
applicable for cases, whereas the hardness tensor is 
non-singular. According to the Mors lemma,43 only 
for Det(ηij) ≠ 0 the higher order terms in the Taylor 
series do not change the properties of the energy 
functional, ∆E(n, ε).  

 If the third term in (1) is considered under the as-
sumption of ∆nj = ∆nk (6) turns into: 
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It is possible to introduce now a corrected hardness 
tensor [ηηC] with elements 
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and to apply straightforwardly the (6)–(11) to com-
pute reactive indices taking into account the third 
order KS-energy functional derivative. 
 Numerically, orbital hardness tensor elements 
(ηij) and their variation with respect to ∆nj (Aij) are 
obtained with sufficient accuracy from the finite-
difference formulae: 
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 (15) 
To carry out numerically the difference quotient of 
(14) and (15) with finite � nj one first provides self-
consistent calculations for the ground-state energy 
and then for each perturbed orbital with occupation 
nj = 1–� nj and nj = 1–1/2� nj for the occupied orbitals 
and nj = 0 + � nj and nj = 0 + 1/2� nj, for the virtual 
orbitals.  

3. Positively defined hardness tensor and  
stability of a molecular system 

As already mentioned, the third term in the Taylor 
series, (1), appears to be important for singular [ηη]. 
Therefore, we find it of interest to discuss below the 
stability of a many-electron system in terms of eigen-
values of the hardness tensor. 
 System stability is determined in general by the 
eigenvalues of the matrix whose elements are energy 
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derivatives of second order (Hessian) with respect to 
the coordinates or to the occupation numbers,45 i.e. 
in our case the eigenvalues of hardness tensor. The 
eigenvalues ζi and the eigenvectors cij are obtained 
by taking orthogonal transformation of [ηη], 
 

 [ηη]N =[C]'[ηη] [C],  

 
with [C] being an orthogonal matrix and [ηη]N – the 
normal presentation of the hardness tensor. It is 
straightforward to define now the normal coordi-
nates in the parametric space of occupation numbers 
and KS-one-particle energies as: i j ij jQ c n= ∑ ∆ and 
to express ηij in terms of ζi and cij: .ij k k ki kjc cη ζ= ∑  
Positively defined hardness tensor (ζi > 0, for each 
i = 1, …, N) means a minimum of energy variation 
∆E(n, ε), and thus stable molecular systems. For, 
ζk �  0 the system would lose its stability and Aij cor-
rections to the hardness tensor would need to be 
taken into account. 
 In the limit of total hardness approximation 
η = 1/2(I−A) where only two (HOMO and LUMO) 
orbitals are considered with εHOMO = –I and εLUMO = 
–A, orbital hardness elements are defined from the 
Pariser46 formula as ηII = ηAA = I−A and the off-
diagonal hardness tensor elements, ηIA, are set equal 
to zero, the eigenvalues of this two-dimensional 
hardness tensor is equal to 2η. Therefore, for this 
particular case of taking into account only the fron-
tier orbitals, the higher hardness value is directly as-
sociated with the higher system stability. This is not 
necessarily true if the whole spectrum of the molecular 
system is considered in reactivity index computa-
tions. Moreover, η is a size dependent quantity and 
cannot be used in general as the only stability crite-
rion. 

4. The third-order corrections to ηη and fi for 
H2O, H2S and OH– 

Present calculations were performed using the de-
Mon code and the GGA functional as proposed by 
Perdew47 for correlation and by Perdew and Wang48 
for exchange energies and potentials (PW86). Orbital 
basis functions of double-ζ (DZVP) quality49 were 
adopted, whereas the auxiliary functions for fitting 
the density include orbitals up to l = 4. Computations 
of first- and second-order one-particle energy de-
rivatives were carried out assuming ∆ni = 0⋅5 and 
0⋅25 respectively. 

 Recently reported42,50 benchmark computations 
with deMon code on hardness tensors and reactivity 
indices revealed very good numerical stability to-
wards basis sets and exchange-correlation functionals. 
The symmetry of the hardness tensor is maintained, 
even though its elements are computed differently, 
either using the left side (occupied) or right side 
(unoccupied) derivative of the one-particle energies 
with respect to the orbital occupation numbers. 
 In tables 1a and 1b are reported ηij together with 
Aij values of the occupied valence orbitals and LUMO 
for H2O and H2S molecules. Table 1c collects ηij 
and Aij for the occupied valence OH– orbitals. Note 
that the maximum asymmetry for ηij is found equal 
to 10–3, which is a very reasonable accuracy for these 
quantities. For [A] asymmetry of about 10–1 is ob-
tained and the Aij elements in table 1 are the sym-
metriesed values. Our computations for the second 
and third terms in the Taylor series, (1), reveal that 
Aij values amount to a maximum of 22% of the orbital 
hardnesses for the occupied orbitals of water mole-
cule and to 36% of the LUMO diagonal hardness 
element (see table 1a). The Aij/ηij ratio is slightly 
smaller for H2S molecule, while for OH– Aij are 
found to be equal or less than 10% of the orbital 
hardnesses.  
 As expected, the minimum eigenvalue of the hard-
ness tensor ζmin is positive, that is ζmin = 0⋅32, 0⋅63 
and 0⋅45 eV for H2O, H2S and OH–, respectively. To 
examine the influence of Aij in computing Fukui in-
dices, (10), and total hardness (11) we performed the 
calculations using both ηij and ηij

C. As seen from the 
fi and η values reported in table 2 the third term in 
the Taylor expansion of the KS-energy functional is 
insignificant. Indeed, the relative trend of the orbital 
Fukui index values ( *

if ) coming from computations 
with the third-order corrections to [ηη] follows those 
of the linear fukui indices (fi), though there is a 
small difference between the absolute values of fi 
and * ,if  especially in the case of H2O molecule. For 
water molecule the diagonal hardness element of the 
LUMO undergoes higher variation (higher 

11 4,4 AAA  
value) when compared to the 

11 4,4 AAA  value for H2S. 
In spite of the small numerical difference found be-
tween fi and *

if  the chemical behavior of the orbi-
tals remains unaffected by the third-order correction.  
 For the three species the third-order corrections 
did not stabilize/destabilize additional the hardness 
tensors, as very similar results for ζi were obtained 
from both types of computations: with and without 
accounting for Aij. Our numerical results corroborate 
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Table 1(a). Hardness tensor elements ηij and their variations Aij with the occupation numbers for the valence occu-
pied orbitals and the LUMO of H2O molecule. The results are in eV. 

  ηij Aij 
 

 2A1 1B2 3A1 1B1 4A1 2A1 1B2 3A1 1B1 4A1 
 

2A1 10⋅06  9⋅34  8⋅50  8⋅49  5⋅64  –2⋅16  –1⋅60  –2⋅05  –2⋅10 –0⋅55 
1B2   9⋅30  8⋅03  8⋅13  5⋅46  –1⋅47 –1⋅94  –2⋅08  –0⋅42 
3A1    9⋅29  8⋅15  4⋅83     –1⋅93  –2⋅20  –0⋅23 
1B1    9⋅10  5⋅00      –2⋅31  –0⋅38 
4A1     6⋅37        –2⋅32 
 

Table 1(b). Hardness tensor elements ηij and their variations Aij with the occupation numbers for the valence occu-
pied orbitals and the LUMO of H2S molecule. The results are in eV. 

  ηij
 Aij

 

 

 2A1 1B2 3A1 1B1 4A1 2A1 1B2 3A1 1B1 4A1 
 

2A1 8⋅31  6⋅36  5⋅87  5⋅84  5⋅04 –1⋅05 – 0⋅89  – 0⋅81  – 1⋅05  – 0⋅61 
1B2  6⋅47  5⋅40  5⋅21  4⋅99  – 0⋅82  – 0⋅82  – 0⋅90  – 0⋅54 
3A1   6⋅05 5⋅32  4⋅87   – 0⋅82  – 0⋅94  – 0⋅54 
1B1    5⋅95  4⋅38    – 0⋅92  – 0⋅48 
4A1     7⋅23     – 2⋅42 

 
Table 1(c). Hardness tensor elements ηij and their variations Aij with the occupation num-
bers for the valence occupied orbitals of OH–. The results are in eV. 

  ηij
 Aij

 

 

 2σ 3σ 1π 2σ 3σ 1π 
 

2σ 13⋅64  12⋅11  12⋅37 1⋅29  1⋅13 1⋅16 
3σ  12⋅41  11⋅49  1⋅17  1⋅08 
1π   12⋅07   1⋅02 

 
Table 2. Orbital Fukui indices ( fi) for valence occupied 
orbitals and total hardness (η) in eV computed without Aij 
corrections for H2O, H2S and OH–. *

if  and η* indicates 
orbital fukui indices and total hardness in eV for H2O, 
H2S and OH– computed by employing the Aij corrections 
to the hardness tensor. 

Orbital 2A1 1B2 3A1 1B1 4A1 
 

H2O 
 fi –0⋅496 0⋅255 0⋅297 0⋅192 0⋅753 
 *

if  –0⋅384 0⋅191 0⋅216 0⋅158 0⋅919 
 η/η∗  5⋅78/5⋅44 
 
H2S 
 fi –0.205 0⋅237 0⋅199 0⋅501 0⋅268 
 *

if  –0.199 0⋅183 0⋅116 0⋅505 0⋅396 
 η/η∗  5.25/5.22 
 

Orbital 2σ 3σ 1π 

 

aOH– 
 fi –0⋅474 0⋅492 0⋅982 
 *

if  –0⋅473 0⋅491 0⋅982 
 η/η* 11⋅64/11⋅92 

the conclusion that the third order KS energy func-
tional derivative does not affect the reactivity indi-
ces for systems characterized by a positively defined 
hardness tensor.  

5. Conclusions 

An extension of the numerical algorithm to compute 
orbital reactivity indices (ORHT) including the 
third-order KS energy functional derivative is pro-
posed. This scheme is easily achieved numerically 
as it uses the Janak’s theorem within DFT, thus re-
ducing the order of the derivatives. The third term in 
the Taylor expansion of KS energy over the number 
of electrons can be neglected for positively defined 
hardness tensors, as demonstrated numerically for 
H2O, H2S and OH–. This term, however, might affect 
significantly the results for less stable systems, for 
which zero or even negative eigenvalues of [ηη] ap-
pear. Same conclusion applies for reactivity index 
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methods based on the use of hardness tensor within 
the electronegativity equalization method in spite of the 
numerical approach to the hardness tensor elements. 
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